Mellinger Controller ==================== In this section we detail the mathematical background for the Mellinger controller that is implemented in the Pegasus Autopilot. It sends angular rates and total thrust commands to the inner-loops of the vehicle to be tracked. This is an adapted version of the algorithm proposed in :cite:p:`Mellinger, Pinto2021`. Reference trajectories :math:`\{p_{des},~v_{des},~a_{des},~j_{des}\}` should be three times continuously differentiable. Mathematical Background ----------------------- The vehicle translational dynamics derive from Newton's 2nd law of motion and are expressed as .. math:: m\dot{v} = mge_3 - TRe_3 where :math:`R = \left[ \begin{matrix} x_b & y_b & z_b \end{matrix} \right]` denotes the vehicle orientation. Define the position and velocity tracking error as .. math:: e_p &= p_{des} - p \\ \dot{e}_p &= e_v = v_{des} - v The total force to be applied to the vehicle body is given by .. math:: F_{des} = m (K_p e_p + K_d e_v - ge_3 + a_{des}) Next, compute the desired :math:`z_b` axis from the desired total force .. math:: z_b^{des} = -\frac{F_{des}}{||F_{des}||} .. admonition:: Reference Frames The reference frames are defined as follows: - The inertial frame :math:`\mathcal{I}` is defined according to the North-East-Down (NED) convention. - The body frame: :math:`\mathcal{B}` is defined according to the Forward-Right-Down (FRD) convention. As the body z-axis is pointing downwards, but the force vector is pointing upwards, a minus sign appears in the expression of :math:`z_b^{des}`. Get the desired total thrust to apply to the vehicle by projecting :math:`F_{des}` onto the actual body z-axis (not the desired one that we computed before), .. math:: T = -F_{des}^\top z_b .. From the desired yaw angle :math:`\psi_{des}` reference of the body aligned with the inertial frame, we define The orientation kinematics are governed by the following equation .. math:: \dot{R} = R (\omega)_{\times} where :math:`(\omega)_{\times}` is the skew-symmetric matrix of the angular velocity vector. To drive the vehicle orientation to a desired reference :math:`R_{des}`, we design a control law that provides angular rate setpoints. It is defined as .. math:: \omega = -K_R e_R + \omega_{des} where the rotation error :math:`e_R` is computed according to .. math:: e_R = \frac{1}{2}(R_{des}^\top R - R^\top R_{des})^\vee The operator :math:`\vee` maps a skew-symmetric matrix to a vector as follows .. math:: \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix}^\vee = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} We now present the steps to compute :math:`R_{des}` and :math:`\omega_{des}`. To obtain :math:`R_{des} = \left[ \begin{matrix} x_b^{des} & y_b^{des} & z_b^{des} \end{matrix} \right]`, start by defining .. math:: y_c = \begin{bmatrix} -\sin(\psi_{des}) & \cos(\psi_{des}) & 0 \end{bmatrix}^\top from the desired yaw angle :math:`\psi_{des}`. With this definition, the desired :math:`x_b^{des}` and :math:`y_b^{des}` axes are given by simple expressions, .. math:: x_b^{des} &= \frac{y_c^{des} \times z_b^{des}}{||y_c^{des} \times z_b^{des}||} \\ y_b^{des} &= z_b^{des} \times x_b^{des} As for :math:`\omega_{des} = \left[ \begin{matrix} p_{des} & q_{des} & r_{des} \end{matrix} \right]^\top`, let :math:`j` denote the jerk of the vehicle and take the first time-derivative of the translational dynamics to get .. math:: \frac{d}{dt}(ma) &= \frac{d}{dt}(mge_3) - \frac{d}{dt}(TRe_3) \\ \Leftrightarrow m j &= -\dot{T}Re_3 - T\frac{d}{dt}\left(Re_3 \right) \\ &= -\dot{T}Re_3 - TR\omega \times Re_3 \\ &= -\dot{T}z_b - TR \left( \omega \times e_3 \right) \\ &= -\dot{T}z_b + T R \left(e_3 \times \omega \right) \\ &= -\dot{T}z_b + T (-q x_b + p y_b) .. &= -\dot{T}z_b + T R \begin{bmatrix} -q \\ p \\ 0\end{bmatrix} \\ * If we left multiply the jerk equation by :math:`x_b^{\top}` we get .. math:: m x_b^{\top}j &= \underbrace{-\dot{T}x_b^{\top}z_b}_{0} + T (\underbrace{-q x_b^\top x_b}_{-q} + \underbrace{p y_b^\top x_b}_{0}) \\ \Leftrightarrow q &= -\frac{m}{T}x_b^{\top}j * If we left multiply the jerk equation by :math:`y_b^{\top}` we get .. math:: m y_b^{\top}j &= \underbrace{-\dot{T}y_b^{\top}z_b}_{0} + T (\underbrace{-q x_b^\top y_b}_{0} + \underbrace{p y_b^\top y_b}_{p}) \\ \Leftrightarrow p &= \frac{m}{T}y_b^{\top}j * The angular velocity about the z-axis can be obtained from the first time derivative of the yaw angle .. math:: r = \dot{\psi} e_3^\top z_b Then given orientation :math:`R_{des}` and jerk :math:`j_{des}` references, the desired angular rates are given by .. math:: \omega_{des} = \begin{bmatrix} \frac{m}{T}{y^{des}_b}^{\top}j^{des} \\ -\frac{m}{T}{x^{des}_b}^{\top}j^{des} \\ \dot{\psi}_{des} e_3^\top z_b^{des} \end{bmatrix} .. .. admonition:: Feed-forward references .. Note that we have expressed :math:`p`, :math:`q` and :math:`r` angular-velocities as a function of :math:`x_b`, :math:`y_b` and :math:`z_b` axis, but our goal is to get the desired feed-forward .. terms for the angular velocities to feed to a proportional controller. Therefore, we must compute :math:`p_{des}`, :math:`q_{des}` and :math:`r_{des}` using :math:`x_b^{des}`, :math:`y_b^{des}` and :math:`z_b^{des}`. Implementation -------------- This controller is implemented in ``pegasus_autopilot/autopilot_controllers/src/mellinger_controller.cpp``. The code is shown below: .. literalinclude:: ../../../../../pegasus_autopilot/autopilot_controllers/src/mellinger_controller.cpp :language: c++ :lines: 113-201 :lineno-start: 1